The Mechanical Coupling of Fluid-Filled Granular Material Under Shear

نویسندگان

  • L. Goren
  • E. Aharonov
  • D. Sparks
  • R. Toussaint
چکیده

The coupled mechanics of fluid-filled granular media controls the physics of many Earth systems such as saturated soils, fault gouge, and landslide shear zones. It is well established that when the pore fluid pressure rises, the shear resistance of fluid-filled granular systems decreases, and as a result catastrophic events such as soil liquefaction, earthquakes, and accelerating landslides may be triggered. Alternatively, when the pore pressure drops, the shear resistance of these geosystems increases. Despite the great importance of the coupled mechanics of grains-fluid systems, the basic physics that controls this coupling is far from understood. Fundamental questions that need to be addressed are what are the processes that control pore fluid pressurization and depressurization in response to deformation of the granular skeleton? and how do variations of pore pressure affect the mechanical strength of the grains skeleton? To answer these questions, a formulation for the pore fluid pressure and flow is developed from mass and momentum conservation, and is coupled with a granular dynamics algorithm that solves the grain dynamics, to form a fully coupled model. The pore fluid formulation reveals that the evolution of pore pressure obeys a viscoelastic rheology in response to pore space variations. Elastic-like behavior dominates with undrained conditions and leads to a linear relation between pore pressure and overall volumetric strain. Viscous-like behavior dominates under well drained conditions and leads to a linear relation between pore pressure and volumetric strain rate. Numerical simulations reveal the possibility of liquefaction under drained and initially over-compacted conditions, which were often believed to be resistant to liquefaction. Under such conditions liquefaction occurs during short compactive 1 ha l-0 07 01 93 6, v er si on 1 28 M ay 2 01 2 Author manuscript, published in "Pure and Applied Geophysics 168, 12 (2011) 2289-2323" DOI : 10.1007/s00024-011-0320-4

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modified mathematical model for variable fill fluid coupling

Variable fill fluid couplings are used in the speed control units. Also, variation in coupling oil volume is used in adapting one size of coupling to a wider range of power transmission applications. Available model for the partially filled fluid couplings, has a good performance for couplings with fixed amount of oil but their performance will be degraded if they are used for the variable fill...

متن کامل

Nonlinear Vibration Analysis of the Fluid-Filled Single Walled Carbon Nanotube with the Shell Model Based on the Nonlocal Elacticity Theory

Nonlinear vibration of a fluid-filled single walled carbon nanotube (SWCNT) with simply supported ends is investigated in this paper based on Von-Karman’s geometric nonlinearity and the simplified Donnell’s shell theory. The effects of the small scales are considered by using the nonlocal theory and the Galerkin's procedure is used to discretize partial differential equations of the governing i...

متن کامل

Electro-Thermo-Mechanical Vibration Analysis of a Foam-Core Smart Composite Cylindrical Shell Containing Fluid

In this study, free vibration of a foam-core orthotropic smart composite cylindrical shell (SCCS) filled with a non-viscous compressible fluid, subjected to combined electro-thermo-mechanical loads is investigated.  Piezoelectric polymeric cylindrical shell, is made from polyvinylidene fluoride (PVDF) and reinforced by armchair double walled boron nitride nanotubes (DWBNNTs). Characteristics of...

متن کامل

Nonlinear Vibration and Instability Analysis of a PVDF Cylindrical Shell Reinforced with BNNTs Conveying Viscose Fluid Using HDQ Method

Using harmonic differential quadrature (HDQ) method, nonlinear vibrations and instability of a smart composite cylindrical shell made from piezoelectric polymer of polyvinylidene fluoride (PVDF) reinforced with boron nitride nanotubes (BNNTs) are investigated while clamped at both ends and subjected to combined electro-thermo-mechanical loads and conveying a viscous-fluid. The mathematical mode...

متن کامل

Effects of coupling on turbulent gas-particle boundary layer flows at borderline volume fractions using kinetic theory

This study is concerned with the prediction of particles’ velocity in a dilute turbulent gas-solidboundary layer flow using a fully Eulerian two-fluid model. The closures required for equationsdescribing the particulate phase are derived from the kinetic theory of granular flows. Gas phaseturbulence is modeled by one-equation model and solid phase turbulence by MLH theory. Resultsof one-way and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012